
Embedded Software Design Automation

Rance Cleaveland David Hansel Steven Sims Scott Smolka
Reactive Systems, Inc.

120-B East Broad Street
Fall Church, VA 22046

Abstract

We argue that operational modeling and analysis of software systems offers an
attractive avenue for improving both the productivity of software engineers and the
quality of the control-intensive software they produce. Operational modeling forms
the basis for the tools offered by Reactive Systems, Inc. (RSI) in support of Embedded
Software Design Automation (ESDA), an emerging discipline that provides modeling
and analysis tools for developers of embedded software. RSI expects that ESDA will
make embedded-software development much more like the processes followed in more
established engineering disciplines such as electrical, mechanical, and aerospace.

1 Introduction

In traditional engineering disciplines such as mechanical or electrical, engineers routinely use
mathematical modeling and analysis techniques during the design and development phases of
products and processes. Such models provide precise feedback on design decisions much more
quickly and at a much lower cost than would be otherwise possible. For example, aerospace
engineers employ differential and integral equations to model air flow around aircraft and to
analyze pressure loads. Such virtual wind tunnel methodologies allow experimentation with
different designs without the use of expensive mockups in actual wind tunnels. The advent
of computer-aided design and simulation tools has further reduced the costs associated with
the use of mathematical modeling in engineering, and one may find several commercially
successful packages on the market.

In contrast, the use of rigorous modeling techniques in the development of software
remains virtually non-existent. Current software-development practice largely relies on in-
formal approaches such as code review and testing to ensure that a system implementation
adheres to its requirements. The general lack of formal modeling at design time means that
reviews and testing may only be applied when code has been developed, at which point
significant resources have already been expended.

The high costs of software development, the frequency with which software-development
projects fail, and the relatively low quality of many software products, may be attributed
in part to this lack of formalized design support for software. Traditional Computer-Aided

1

Software Engineering (CASE) tools provide some assistance, but only at the level of project
management and design documentation. The facilities for modeling and analyzing system be-
havior, even of modern, commercially successful CASE environments, remain quite primitive
in comparison with the analytical tools available to engineers in more-established branches
of engineering.

Reactive Systems, Inc. (RSI) believes that a compelling basis for the rigorous model-
ing of control-intensive (as opposed to data-intensive) software can be found in the recent
emergence of mathematically precise, yet operational and hence easy-to-grasp, approaches
to modeling systems and efficient techniques for validating such models. Control-intensive
software is found prominently in embedded applications such as automobiles, cardiac pace-
makers, aircraft and cell phones; RSI is developing a collection of technologies we refer to as
embedded-software design automation (ESDA) that provides operational yet rigorous model-
ing, analysis and implementation support for embedded-software engineers. The mathemat-
ical precision ESDA brings to the traditionally ad hoc arena of software design will greatly
enhance engineer productivity while improving the quality of the software produced. As a
result, RSI expects that ESDA users will be able to reduce their embedded-software costs,
including those related to development, software-related product failures, and liability, by
50% or more.

RSI’s vision is that within 10 years, every embedded-software developer will use rigorous
ESDA technology to improve software quality and reduce costs. The Company foresees the
ESDA industry becoming as important as the Electronic Design Automation industry, which
produces digital hardware design tools and had revenues in 2000 of $3.8 billion.

2 Methodology

RSI’s ESDA environment is built around executable models. Users formulate these models
in notations that have a notion of execution step. These models might be given in existing
notations such as Simulink/Stateflow or UML state machines, or they can be given in RSI-
proprietary notations that provide support for model interoperability by providing rigorous
yet easy-to-use constructs for “glueing together” submodels into asynchronously executing
system models. Once an executable model is in place, a variety of different techniques may
be used to study their behavior, including:

Simulation. The results of model execution may be studied for aberrant behavior.

Testing. Models may be subjected to tests.

Model checking: Models may be (semi-)exhaustively executed and the resultant execu-
tions checked for undesirable properties.

Once a stable model is produced, it may be used as a basis for further development activities:
tests for source code may be generated from them, as can the eventual source itself in many
cases. The models also serve as “active documentation” that can be studied and executed
by maintainers and system enhancers.

2

Development Stage Automated Support Offered by ESDA

Requirements Capture requirements as scenarios, logical formu-
las, abstract models.

Design Support model construction and validation
against requirements.

Implement Generate code from models, or provide models as
blueprints for manual implementation.

Test Generate test suites from models – for both unit
and integration testing, as well as for model re-
construction from existing code.

Monitor Generate deployable on-chip monitoring code
from models.

Maintain Use models as documentation, aid for debugging
(together with diagnostic information from moni-
tors), and basis for assessing new system features.

Figure 1: Model-based software development using ESDA.

Figure 1 summarizes how ESDA supports different stages of the software development life-
cycle, with models serving as the link from one stage to the next. Ideally, use of ESDA tools
begins during the requirements stage and continues throughout the life-cycle, as indicated
in Figure 1. ESDA can also be effectively applied to legacy systems . To re-engineer an
existing system, engineers would build models reflecting their understanding of the system.
They would then deploy simulate the model’s to check that their behavior accords with their
expectations. Tests could then be generated and applied to both the model and the original
system; the responses to these tests would help the engineer determine whether or not s/he
has correctly captured the system’s functionality in the model. Once this determination has
been made, documentation templates could be generated from the model.

3 Reactis

RSI’s Reactis tool suite is intended to reify the ESDA vision outlined in Section 2 by provid-
ing mathematically rigorous modeling, analysis and implementation support for embedded-
software engineers. By automating coding tasks and providing precise design-time feedback
to designers, Reactis is intended to speed software development, lower costs, and improve

3

software quality.
Reactis will comprise six tools, each of which is described below.

Reactis Modeler allows users to develop structured models of embedded software.
The models consist of hierarchically structured “networks” of submodels that interact with
one another using “communication links”. Submodels may take different forms.

• They may be subnetworks.

• They may be individual component models defined in RSI’s proprietary notation.

• They may be models developed using other tools and “imported” into Modeler.

To ensure semantic compatibility with non-RSI modeling notations, the Company has given
its modeling language a flexible, yet mathematically precise, “foreign language” interface. In
particular, it is possible to use Modeler to design models containing submodels developed
in the Simulink/Stateflow languages of The MathWorks; the STATEMATE notation of I-
Logix; the SDL notation of Telelogic; and the UML state machine notation of Rational.

Reactis Simulator allows models to be simulated interactively and automatically so
that design bugs may be uncovered without the designs having to be implemented. Once
users create a model, they can step through the execution of the model using Simulator,
which functions like traditional debuggers from programming languages: designers may ex-
plore the execution of their designs an execution step at a time, or they may set break
points and let the system run autonomously until a break point is reached. Simulator also
supports replay and reverse execution for models given in RSI’s notations, thereby allowing
simulations to be stopped, “backed up” and restarted. The tool also includes a “smart sim-
ulation” mode that allows users to bypass parts of a model that have been visited during a
prior simulation run, thereby avoiding duplicate simulation effort.

Reactis Validator rigorously checks for consistency properties of system models. This
tool enables the early detection of design errors and inconsistencies and reduces the effort
required for design reviews. Using Validator, an engineer can automatically check his or
her models for any of a number of generic consistency violations, including the following.

• Undefined variables • Nondeterminism
• Type errors • Dead code
• Missing cases • Deadlock

Validator performs such checks using an intelligent, systematic exploration of the model’s
potential behaviors. If a consistency property is found to be violated, the tool provides the
user with an explanation in the form of an execution sequence leading to the place where the
violation occurs. The engineer may then use the simulator to step through this execution to
locate the source of the problem.

Validator also allows engineers to define custom checks tailored to a particular appli-
cation.

4

Reactis Tester generates test cases from models. These test cases may then be fed
to the model and its implementation (source code) and the outputs compared to determine
whether or not the code conforms to its model. The tool uses technology derived from
Validator to systematically explore system models; by specifying different coverage criteria
(such as decision coverage, statement coverage, modified condition/decision coverage), a user
may precisely indicate how exhaustive the testing should be. The tool eliminates the need
for producing test suites manually and reduces the time spent in testing by ensuring that
unnecessary tests are avoided.

Reactis Coder generates executable code from embedded-system models. By guaran-
teeing conformance between the code it generates and the models it is given, Coder is
intended to reduce both the time consumed in manual coding and the effort expended in
testing.1 The source code produced by Coder is also useful for prototyping purposes, and
the structural similarity between Coder-generated code and the models from which it is
derived makes it easy for software engineers to review and modify. Coder generates C
and C++ code, and current plans call for the addition of Java-generation capability. For
reasons of portability, Coder-produced source code targets an RSI-designed API (appli-
cation programming interface); to run the produced code on their platforms users need an
implementation of this API. The Company expects to provide implementations for popular
commercial real-time operating systems such as Wind River’s VxWorks and intends to work
on a consulting basis to develop efficient implementations of the API for companies with
proprietary platforms.

Reactis Tracker generates custom run-time monitors from models. Tracker is de-
signed to catch subtle errors that escape analysis and testing and show up “in the field.”
A generated monitor is incorporated into an application to observe the application’s im-
plementation, for the purpose of identifying anomalous behaviors. When such behavior is
detected, the monitor stores diagnostic information in the form of event sequences leading
to the problem, takes associated corrective measures, and alerts the proper personnel of
the situation. The technology in Tracker borrows from both Validator and Coder.
Tracker-generated monitors can be thought of as “software black boxes” that, in analogy
with the “black boxes” on aircraft, monitor embedded software for diagnostic purposes.

4 Conclusions

This document has argued for the use of mathematically rigorous, operationally based mod-
eling in the design and development of control-intensive embedded software. It has also
outlined the commercial opportunities we see in providing tools based on these ideas to
embedded-software developers.

1In practice, Coder-generated source is still likely to be subjected to testing, both for regulatory reasons
(agencies such as the Food and Drug Administration and the Federal Aviation Agency mandate software
testing), and cultural ones (users may be wary about relying on untested, automatically produced code).

5

